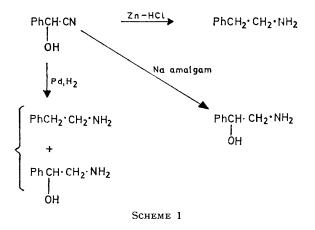
A Simple and Mild Method for reducing Cyanohydrins to Amino-alcohols

By Marie-Louise Anhoury, Pierre Crooy,* Robert De Neys, and Jacques Eliaers, Research and Development, R.I.T. S.A., Genval, Belgium

Various halogeno-hydroxy-methoxybenzaldehyde cyanohydrins have been reduced by diborane in 70-80% yield to amino-alcohols without loss of the halogeno-substituent or the alcoholic hydroxy-group.

REAGENTS for the reduction of cyanohydrins to the corresponding 2-amino-alcohols include zinc-hydrochloric acid,¹ sodium amalgam in neutral or acidic solution,² aluminium or magnesium amalgam in acetic acid,³ lithium aluminium hydride,⁴⁻⁶ and hydrogen with palladium,⁷⁻⁹ platinum dioxide,^{10,11} or Raney nickel analyst.¹² However all these methods induce hydrogenolysis of a bromine- or iodine-arene bond, and in some cases the CH·OH group is also hydrogenolysed (Scheme 1).^{1,2,7-9} The latter reaction does not occur if an ortho-substituent is present,¹³ as in the reduction of 2-chloro- and 2,3-dimethoxy-mandelonitrile with hydrogen over palladium.

The mild method described here makes possible the reduction of halogeno-benzaldehyde cyanohydrins which do not have a substituent ortho to the cyanohydrin system, without hydrogenolysis of the CH-OH or CX groups. The reducing agent is a ca. 0.7M-solution of diborane in tetrahydrofuran,¹⁴ and yields are generally in the 70-80% range. The various alcohols obtained are shown in Scheme 2.


The starting halogeno-benzaldehydes were synthesized as shown in Scheme 3. Halogenated vanillins are directly obtained from vanillin. The 5-halogeno-

- ¹ M. Fileti and A. Piccini, Gazzetta, 1879, 9, 294.
- M. Fileti and A. Ficchi, Gassena, 1010, 9, 201.
 Hoechst, D.P. 193,634/1906.
 F. A. Mason, J. Chem. Soc., 1921, 119, 1077.
 H. R. Nace and B. B. Smith, J. Amer. Chem. Soc., 1952, 74,

1861. A. Dornow and G. Petsch, Arch. Pharm., 1951, 284, 160.

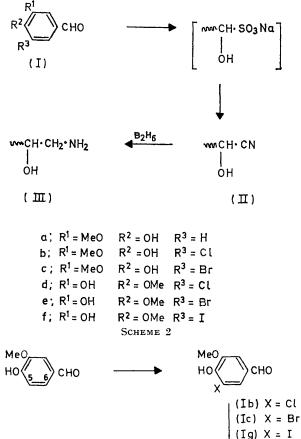
⁶ F. Winternitz and N. J. Antia, Bull. Soc. chim. France, 1953, 20 (5), 25.
⁷ W. H. Hartung, J. Amer. Chem. Soc., 1928, 50, 3370.
⁸ K. Kindler, W. Peschke, and E. Brandt, Ber., 1935, 68, 2241.

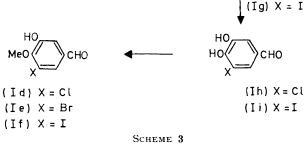
isovanillin derivatives were obtained via selective methylation of the corresponding halogenated protocatechualdehydes,¹⁵ since direct halogenation gives the 6-halogeno-derivatives.

The pattern of aromatic proton signals in the n.m.r. spectra of the amino-alcohols can be used to identify

⁹ J. Weijlard, E. F. S. Swanezy, and U. Tashjian, J. Amer. Chem. Soc., 1949, 71, 1889.

¹⁰ B. Tchoubar, Bull. Soc. chim. France, 1960, 16 (5), 160.


¹¹ M. W. Goldberg and H. Kirchensteimer, Helv. Chim. Acta, 1943, 26, 288.


12 F. E. Gould, G. S. Johnson, and A. F. Ferris, J. Org. Chesn., 1960, 25, 1658.

- H. S. Buck, J. Amer. Chem. Soc., 1933, 55, 2593.
 G. Zweifel and H. C. Brown, Org. Reactions, 1963, 13, 1.
 M. L. Anhoury, P. Crooy, R. De Neys, and J. Eliaers, Bull.
- Soc. chim. belges, in the press.

1016

the halogen present in the aromatic nucleus. The difference between the chemical shifts of the two

doublets (I_{meta} 1.5–2.0 Hz) increases as the electronegativity of the halogen decreases (see Table).

$\Delta\delta$ (p.p.m.) for the 2 aromatic		
\mathbf{X}	protons	Structure
Cl	0.08 ± 0.02	(IIIb), (IIId)
\mathbf{Br}	0.20 ± 0.02	(IIIc), (IIIe)
Ι	0.40	(IIIf)

EXPERIMENTAL

¹H N.m.r. spectra were recorded on a Perkin-Elmer R12 spectrometer (60 MHz) with deuterium oxide as solvent and sodium 3-trimethylsilylpropane-1-sulphonate as internal reference. $R_{\rm F}$ Values refer to t.l.c. on silica gel with (A) hexane-dioxan (6:4), (B) benzene-methanolacetic acid (45:8:4), or (C) n-butanol-acetic acid-water

¹⁶ R. A. McIvor and J. M. Pepper, Canad. J. Chem., 1953, 31,

298. ¹⁷ C. Y. Hopkins and M. J. Chisholm, *Canad. J. Res.*, 1946, **24B**,

(4:1:1) as solvent. The purity of the amines was determined by potentiometric titration in non-aqueous medium. Elemental analyses were performed on a Hewlett-Packard CHN Analyzer 185B.

Substituted Benzaldehydes.-5-Bromo-(Ic),¹⁶ 5-chloro-(Ib),¹⁷⁻²⁰ and 5-iodo-vanillin (Ig) ^{18, 19, 21} and 5-bromoisovanillin (Ie)¹⁵ were synthesized according to literature methods.

3-Chloro-4,5-dihydroxybenzaldehyde (Ih) (5-chloroprotocatechualdehyde). Anhydrous pyridine (55 ml, 0.7 mol) was added dropwise to a mixture of 5-chlorovanillin (Ib) (30 g, 0.16 mol) and aluminium chloride (24 g, 0.18 mol) in dichloromethane (200 ml). The mixture was then heated for 17 h at reflux temperature and poured into ice-water (500 ml). The white precipitate was filtered off, washed, and dried to yield the product (Ih) (80.3 g. 93%), m.p. 228-229°, purity by potentiometric titration, 99% (OH) (Found: C, 48.5; H, 3.0. C₇H₅ClO₃ requires C, 48.7; H, 2.9%), & (CDCl₃) 9.73 (1H, s, CHO), 7.37 (1H, d, aromatic, J 1.8 Hz), and 7.28 (1H, d, aromatic J 2.0 Hz), $R_{\rm F}$ (A) 0.18 [2,4-dinitrophenylhydrazine (DNP) as reagent].

3-Chloro-5-hydroxy-4-methoxybenzaldehyde (Id) (5-chloroisovanillin). Sodium hydrogen carbonate (346-1 g, 4-12 mol) was added in portions to a hot solution (60°) of 5-chloroprotocatechualdehyde (Ih) (690.4 g, 4 mol) and methyl iodide (327 ml, 5·2 mol) in dimethylformamide (2·4 1). After 15 h stirring at 60°, the mixture was poured into water; the precipitate was filtered off, washed with water, and dried under vacuum at 50°. This crude product was dissolved in chloroform and the unchanged starting material was filtered off. The dried solution was passed through a column of silica gel G and concentrated to a small volume. The resulting crystals were filtered off, washed with cold chloroform (-30°) , and dried to yield the *product* (Id) (285 g, 38%), m.p. 117-118° (Found: C, 51.5; H, 3.8. C₈H₇ClO₃ requires C, 51.5; H, 3.8%), & (CDCl₃) 9.85 (1H, s, CHO), 7.48 (1H, d, aromatic, J 1.8 Hz), 7.39 (1H, d, aromatic, J 1.8 Hz), and 4.01 (3H, s, OMe), purity by potentiometric titration, 99% (OH), $R_{\rm F}$ (A) 0.72 (DNP and FeCl₃).

3,4-Dihydroxy-5-iodobenzaldehyde (Ii) (5-iodoprotocatechualdehyde). Aluminium chloride (73.4 g, 0.55 mol) was added to a suspension of 5-iodovanillin (Ig) (139.3 g, 0.5 mol) in anhydrous dichloromethane (600 ml). Anhydrous pyridine (174 ml, 2.2 mol) was then added dropwise. After 64 h at room temperature, the complex was hydrolysed in 4N-HCl and the resulting white precipitate was washed with cold water and dried to yield the product (Ii) (121 g, 92%), m.p. 198-199°, purity by potentiometric titration, 98% (OH) (Found: C, 31.9; H, 1.9. C₇H₅IO₃ requires C, 31.8; H, 1.9%), δ [CDCl₃-(CD₃)₂SO, 1:1] 9.70 (1H, s, CHO), 7.72 (1H, s, aromatic, J 1.8 Hz), and 7.33 (1H, s. aromatic, J 1.8 Hz), R_F (A) 0.20 (DNP and FeCl₃).

3-Hydroxy-5-iodo-4-methoxybenzaldehyde (If) (5-iodoisovanillin). Sodium hydrogen carbonate (50.4 g, 0.60 mol) was added in portions to a solution of 3,4-dihydroxy-5-iodobenzaldehyde (Ii) (152 g, 0.575 mol) and methyl iodide (47 ml, 0.725 mol) in dimethylformamide-acetone (1:1) (840 ml). After 7 h stirring at 65° and 15 h at room temperature, the mixture was concentrated and poured into cold water. The precipitate was filtered off, washed

- ¹⁸ R. M. Hann, J. Amer. Chem. Soc., 1925, 47, 1998.
- G. D. Thorn and C. B. Purves, Canad. J. Res., 1954, 32, 373.
 D. Ginsburg, J. Amer. Chem. Soc., 1951, 73, 702.
- ²¹ J. Bougault and P. Robin, Compt. rend., 1921, 172, 452.

with cold water, and dissolved in chloroform. The solution was filtered, dried, passed through a column of silica gel G, and concentrated. The crystals were filtered off, washed with cold chloroform, and dried to yield the product (If) (82 g, 50%), m.p. 134-135.8°, purity by potentiometric titration, 100% (OH) (Found: C, 34.5; H, 2.5. C₈H₇IO₃ requires C, 34.6; H, 2.5%), & (CDCl₃) 9.84 (1H, s, CHO), 7.84 (1H, d, aromatic, J 1.8 Hz), 7.45 (1H, d, aromatic, J 1.8 Hz), and 3.93 (3H, s, OMe), $R_{\rm F}$ (A) 0.9 (FeCl₃).

2-Amino-1-phenylethanols.---2-Amino-1-(4-hydroxy-3methoxyphenyl)ethanol (normetanephrine) (IIIa) hydrochloride. Vanillin (Ia) (152.14 g, 1 mol) was dissolved in 2M-sodium disulphite solution (2 l) at 40°. Potassium cyanide (260 g, 4 mol) in water (520 ml) was added to the cooled (0°) solution. After 5 min stirring, the solution was extracted with ether (4 \times 500 ml). The extracts were washed twice with aqueous 2M-sodium disulphite and once with water, dried (Na_2SO_4) , and concentrated to a small volume. The crude cyanohydrin (IIa) was precipitated in hexane (yield 150 g, 84%), m.p. 80–82° (lit., 22 83°), $R_{\rm F}$ (B) 0.32 (FeCl₂).

A solution of the crude cyanohydrin (IIa) (63 g, 0.35 mol) in anhydrous tetrahydrofuran (300 ml) was slowly added to 0.7_M-diborane in tetrahydrofuran (500 ml) (exothermic!). Anhydrous tetrahydrofuran (650 ml) was added to the solidified complex and the mixture, after 1 h under reflux, was kept at room temperature for 12 h. The excess of diborane was destroyed by slow addition of ethyl alcohol (160 ml). A stream of hydrogen chloride was then passed through the mixture and the precipitated hydrochloride was filtered off, washed, and dried. Crystallization from ethanol-methanol (7:1) followed by methanol-ether (1:1) gave the pure amino-alcohol (IIIa) hydrochloride (32 g, 42%), m.p. 192-194° (decomp.) (lit.,²³ 192-193°), purity by potentiometric titration, 101% (NH₂), $R_{\rm F}$ (C) 0.44 (red colour with ninhydrin) (Found: C, 49.3; H, 6.35; N, 6.3. Calc. for C₈H₁₃NO₃,HCl: C, 49.2; H, 6.4; N, $6.4^{0/}_{0}$), δ (D₂O) 7.14 (3H, m, aromatic), 5.06 (1H, dd, CH, J 7.2 and 5.4 Hz), 3.95 (3H, s, OMe), 3.35 (1H, d, HCH, J 5.4 Hz), and 3.34 (1H, d, HCH, J 7.2 Hz). Crude amino-alcohol (22 g, 29%) was recovered from the mother liquor.

2-Amino-1-(3-chloro-4-hydroxy-5-methoxyphenyl)ethanol (IIIb) hydrochloride. By the procedure just described, 5-chlorovanillin (Ib) (102.5 g, 0.55 mol), sodium disulphite (209 g, 1·1 mol), and potassium cyanide (150 g, 2·2 mol), yielded the crude cyanohydrin (IIb) (102.8 g, 88%), m.p. 110.5—113°, $R_{\rm F}$ (B) 0.49 (FeCl₂). This cyanohydrin (53.5 g, 0.25 mol) was reduced by 0.67m-diborane (373 ml). After acidification and crystallization from methanolether (1:1) gave the amino-alcohol (IIIb) hydrochloride (29.3 g, 42%), m.p. 226°, purity by potentiometric titration, 98% (NH₂), $R_{\rm F}$ ($\bar{\rm C}$) 0.53 (red colour with ninhydrin) (Found: C, 42.4; H, 5.15; N, 5.6. $C_{9}H_{12}CINO_{3}$,HCl requires C, 42.5; H, 5.15; N, 5.5%), δ (D₂O) 7.16 and 7.10 (each 1H, d, aromatic, J 1.5 Hz), 5.06 (1H, dd, CH, J 7.8 and 4.8 Hz), 3.98 (3H, s, OMe), 3.37 (1H, d, HCH, J 4.8 Hz), and 3.34 (1H, d, HCH, J 7.8 Hz).

2-Amino-1-(3-bromo-4-hydroxy-5-methoxyphenyl)ethanol (IIIc) hydrochloride. 5-Bromovanillin (Ic) (231.5 g, 1 mol) was added to a stirred solution (60°) of sodium disulphite (380.22 g, 2 mol) in water (1.2 l). After 3 h the solution was cooled (5°) and unchanged 5-bromovanillin (17.8 g)was filtered off. By the procedure already described,

the crude cyanohydrin (IIc) was obtained. This cyanohydrin (120 g, 0.46 mol) in tetrahydrofuran (500 ml) was added to 0.73m-diborane in tetrahydrofuran (800 ml) and the pure amino-alcohol (IIIc) hydrochloride was isolated (110 g, 79%), m.p. 216-218° (decomp.), purity by potentiometric titration, 100.5% (NH₂), $R_{\rm F}$ (C) 0.48 (red colour with ninhydrin) (Found: C, 36.4; H, 4.5; N, 4.45; O, 16.3. C₉H₁₂BrNO₃,HCl requires C, 36.2; H, 4.4; N, 4.7; O, 16.05%), & (D₂O) 7.29 and 7.11 (each 1H, d, aromatic, J 1.5 Hz), 5.04 (1H, dd, CH, J 7.8 and 4.8 Hz), 3.96 (3H, s, OMe), 3.36 (1H, d, HCH, J 4.8 Hz), and 3.34 (1H, d, HCH, J 7.8 Hz).

2-Amino-1-(3-chloro-5-hydroxy-4-methoxyphenyl) ethanol (IIId) hydrochloride. 5-Chloroisovanillin (Id) (56 g, 0.3 mol), sodium disulphite (114 g, 0.6 mol), and potassium cyanide (78.13 g, 1.2 mol), yielded the crude cyanohydrin (IId) (58 g, 90%), m.p. 99–102°, $R_{\rm F}$ (A) 0.50 (FeCl₃). This cyanohydrin (53 g, 0.25 mol) was reduced by 0.67_Mdiborane (375 ml) as above. Acidification and crystallization in ether gave (IIId) hydrochloride (44 g, 69%), m.p. 195°, $R_{\rm F}$ (C) 0.35 (red colour with ninhydrin), purity by potentiometric titration, 96.6% (NH₂) (Found: C, 42.6; H, 5.1; N, 5.6. C₉H₁₂ClNO₃,HCl requires C, 42.55; H, 5.15; N, 5.5%), & (D₂O) 7.15 and 7.05 (each 1H, d, aromatic, J 1.6 Hz), 5.04 (1H, dd, CH, J 7.2 and 4.2 Hz), 3.91 (3H, s, OMe), 3.37 (1H, d, HCH, J 4.2 Hz), and 3.30 (1H, d, HCH, J 7.2 Hz).

2-Amino-1-(3-bromo-5-hydroxy-4-methoxyphenyl)ethanol (IIIe) hydrochloride. 5-Bromovanillin (Ie) (115.5 g, 0.5 mol), sodium disulphite (190 g, 1 mol) and potassium cyanide (130.2 g, 2 mol) yielded the crude cyanohydrin (IIe) (117 g, 91%), m.p. 89–100°, $R_{\rm F}$ (B) 0.61 (FeCl₃). This cyanohydrin (103 g, 0.4 mol) was reduced by 0.64_Mdiborane (625 ml) as above. Acidification and crystallization in ether gave the amino-alcohol (IIIe) hydrochloride (90 g, 75%), m.p. $206-207^\circ$, purity by potentiometric titration, 97.5% (NH₂), $R_{\rm F}$ (C) 0.51 (red colour with ninhydrin) (Found: C, 49·35; H, 6·4; N, 6·35. C_9H_{13} -BrNO₃, HCl requires C, 49.2; H, 6.4; N, $6.4^{\circ/}_{0}$, δ (D₂O) 7.33 and 7.11 (each 1H, d, aromatic, J 2 Hz), 5.05 (1H, dd, CH, J 8.4 and 3.6 Hz), 3.91 (3H, s, OMe), 3.40 (1H, d, HCH, J 3.6 Hz), and 3.30 (1H, d, HCH, J 8.4 Hz).

2-Amino-1-(5-hydroxy-3-iodo-4-methoxyphenyl)ethanol (IIIf) hydrochloride. 5-Iodoisovanollin (If) (68 g, 0.25 mol), sodium disulphite (95 g, 0.5 mol) and potassium cyanide (49 g, 1 mol) yielded the crude cyanohydrin (IIf) (63 g, 83%), m.p. 75-79°, R_F (A) 0.52 (FeCl₃). This cyanohydrin (25.5 g, 0.08 mol) was reduced by 0.65m-diborane (125 ml), as above. Acidification and crystallization in ethyl acetate gave (IIIf) hydrochloride (14.4 g, 47%), m.p. 195—196.5°, $R_{\rm F}$ (C) 0.39 (red colour with ninhydrin), purity by potentiometric titration, 96% (NH₂) (Found: C, 31·3; H, 3·7; N, 4·15. C₉H₁₂INO₃,HCl requires C, 31·3; H, 3·8; N, 4·05%), δ (D₂O) 7·51 and 7·13 (each 1H, d, aromatic, J 1.8 Hz), 5.02 (1H, dd, CH, J 9.0 and 4.8 Hz), 3.84 (3H, s, OMe), 3.36 (1H, d, HCH, J 4.8 Hz), and 3.30 (1H, d, HCH, J 9.0 Hz).

We thank the Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture, I.R.S.I.A., for financial support.

[3/1926 Received, 19th September, 1973]

 J. S. Buck, J. Amer. Chem. Soc., 1933, 55, 3388.
 G. Fodor, O. Kovacs, and T. Mecher, Acta Chim. Acad. Sci. Hung, 1951, 1, 395.